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A SELF-SIMILAR PROBLEM DEALING WITH THE ONE-DIMENSIONAL COLLISION 

OF TWO HALF SPACES OF A NONLINEAR-ELASTIC MATERIAL 

I. E. Agapov, A. M. Belogortsev, A. A. Burenin, 
and A. V. Rezunov 

UDC 539.3 

The problems associated with investigating the processes of high-speed collisions in 
deformable bodies is of great theoretical and applied significance. However, the solution 
of these problems is associated with considerable difficulties, ascribed to the wave nature 
of strain propagation, as well as by the need to make use of nonlinear mechanical models. 
Self-similar problems from nonlinear elasticity theory provide specific information regar- 
ding the behavior of bodies under conditions of intensive dynamic load, and the solution 
for these problems can be found analytically or comparatively easily with numerical methods. 
The qualitative features of the process of propagating perturbations has been studied [I], 
and solutions have been obtained for a series of specific problems [2-4]. 

In the present study we examine a one-dimensional problem dealing with the collision 
of two nonlinear-elastic half spaces, one of which is addressed, and the second in motion 
at a constant translational velocity. At the boundary of interaction between the bodies 
it is assumed that the Coulomb dry-friction law is fulfilled. We examine the nature of 
the deformation, and we present results from a numerical study of the problem, as well as 
a comparison with the solution for the linear case. 

The Ox~ axis in the Cartesian coordinate system is directed perpendicular to the half- 
space boundary (Fig. I). At the initial instant of time the half space x I > 0 is fixed, 
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while when x I < 0 it has the velocity V 0 = (V10, V20, 0). The material of each of the half 
spaces, prior to collision, is not subjected to deformation. We will write the system of 
equations describing the dynamic behavior of the nonlinear-elastic medium in the following 
form [5, 6]: 

p OW dV~ 
(Yij Do Oeik (~)h.i - -  2ekj), chj,j : 9--~-, 

V~ = OuJOt -~ Vju~ d, 2e~j : u~,j + uj,~ - -  Uh,~Uh,j, 

p/Po = (l - -  2 /  1 -~- 2I~ - -  21, § 4I~I2 - -  (4/3)1~ - -  (8/3)13) 1/2, 

I1 - = e i i ,  I2 = e i je j i ,  I3 = eihe~ieJ~, 

( i )  

where aij, eij, Vi, and u i are the components of the stress tensors, the Almansi finite 
strain tensors, of the velocity vectors and the displacement vectors, respectively; @ and 
P0 are the densities in the instantaneous and free states. We will use the relationship 
between the elastic potential W and the invariance of the strain tensor: 

W = (tI2)L~I~ + phI~ + lhI~I~ + m~I~ + nkI~, k = 1, 2. ( 2 )  

Here X and ~ are the Lame parameters; ~, m, and n are the third-order elasticity moduli; 
k = i for the body against which impact occurs, and k = 2 for the impacting body. At the 
boundary separating the half spaces L the quantities VI, o11, and a12 are continuous 

[ V 1 ] = [ ~ l l l = [ ~ n ] = O ,  [ F ] = F  + - f - .  (3)  

The s u p e r s c r i p t s  p l u s  and minus d e n o t e  t h e  q u a n t i t i e s  c a l c u l a t e d  in  f r o n t  o f  t h e  shock  wave 
(SW) and i m m e d i a t e l y  beh ind  i t .  The V 2 p a r t i c l e  v e l o c i t y  component  f o r  t h e  medium w i l l  
be c o n s t a n t :  

Iv~] : o (4)  

only on satisfaction at L of the condition 

(f is the coefficient of friction). If the solution for the problem with boundary conditions 
(3) and (4) fails to satisfy inequality (5), then we will replace (4) with the following 
relationship: 

I ~1  = !1~1l, (6)  

which represents the Coulomb dryifriction law. In [2] we find a study of the unique features 
involved in the deformation of a nonlinear-elastic half space, whose boundary, starting 
from some instant of time, moves at a constant velocity. Applying the results obtained 
there to the problem under consideration (the boundary conditions lead to the compression 
of the medium), we arrive at a wave pattern such as that illustrated in Fig. i. Thus, the 
strains generated by the collision of elastic half spaces will propagate through the medium 
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in the form of longitudinal X~, X~ and quasilateral [2] E=, Es SW, and we will denote the 
velocities of their motion as G~, G 2, G3, G~. 

The discontinuity planes in combination with the plane L separating the colliding bodies 
divide the elastic space into six zones. In this case, the medium is not deformed in zones 
0 and 5. The particles of the medium from zone 5 have constant velocity V 0 , while those 
from zone 0 are nonmoving. In zones i and 4 there are no shearing strains u2,z (~) = 
u2,~(~) = 0 nor stresses o~2 (~) = oz2(~) = 0 (the superscript indicates that the quantities 
belong to points in the corresponding zone). At the points in each zone u~,~ and u2,~ (and 
consequently, V i, eij, ~ as well) are constant. In this case, the equations of motion 
are satisfied identically. The dynamic and kinematic conditions of consistency [7] are 
satisfied at the SW fronts: 

[Oql] = p+(V~v~ - -  G)[Vi],  i = 1, 2; ( 7 )  

+ v~G = 0 ,  v ~ = t ,  v 2 = - 1 ,  ( 8 )  

which enable us to find the parameters of the stress-strain states at the points in zones 
1-4. Using relationships (I), (2), and (8), and limiting ourselves only to the quadratic 
terms for the tensor components ui, j, we obtain 

[%11 = (X~ + 2 ~ ) ~  + 205~uLF q - -  05at~ -F 2~hu2,1t2 - -  ~h~, 

[Zl~I = ~*~ + V~(U,,I~ + U2a*l - -  *~2); 
[V~I = "~I(V~ - -  vhG)/(t + "~ - -  ul ,0,  

[V~] = (111 - -  v~a) t~  + (us , ,  - -  t , , ) [V~] ,  t~ = [u~ , , l ,  

a~ = 3 ( / ~ + m ~ + n ~ ) - - 3 . 5 ~ - - 7 ~ ,  7 ~ - - I ~ +  t ~ 5 n ~ - - ~ - - 3 t x ~ ,  

13~ = (?~ - -  a~)/2. 

(9) 

( 1 0 )  

Having substituted expressions (9) and (i0) into Eq. (7) and taking into consideration that 
at the waves E~, 2~, [o=i] = [V2] = 0 we have six algebraic equations 

(• 

& [~1~ + 2 (~ - a~) ~ m ~  - (a i  - -  ~) ~b. - -  b ~ ]  = 

= G~'q2 - -  2G 2 (G1 - -  G2) "~11"g12, 

C~ [t (d~ t) (~1i q- t~2)] G 2 2G 2 (G~ G2) - -  - -  = 2 - -  - -  '1211~ 

C221 : I.tl/Pi0: b: = ~:/(~,: + 2~:), d: = ~h/Ih, 

C122 [ t  - -  ( a  2 - -  1) Tla] = (Vio + G4) 2, c212 = (~2 + 2~2)/P20, a2 = 052/(Ez + 2~2). 
2 2 

c22 [~la  + 2 ( t  - -  a2) ~lazla - -  (as - -  t )  t13 - -  b~t231 = (V~0 + Ga) 2 ~ls  

- -  2 (G 4 - -  Gs) (G 3 + V~0 ) ~8~14, 

c ~22 [t  - -  (d.. - -  1)(~18 + "~14)] = ( V l o  + Gs) 2 - -  2 (G a + V~o ) (G 4 - -  Go)"c~ 4, 

for ten unknowns ~11, ~ 2 ,  ~a, ~z~, ~2, "r23, G~, G2, G3, G~. Here, the second of the 
subscripts for �9 indicates for which wave the corresponding discontinuity has been calcu- 
lated. To obtain a closed system of equations we will use boundary conditions (3)-(6). 
In the notation adopted above, condition (3) is written in the form 

(~2 + 2~2)(~:13 + ~la) Jr 053 (a;la -1- "g14) 2 -4- ~223 : 

= - -  (~1 + 2t~0 ( t l~  + ~1~) + a~ ( T ~  + TI~) 2 + I ~ ,  
(V~0 - -  G~TI~ - -  Ga~13)( t + x ~  + T~) = (GlTl~ @ G ~ ) ( t  + T~a + Tla). 

The l a s t  r e l a t i o n s h i p  c l o s i n g  t h e  s y s t e m  o f  e q u a t i o n s  i s  e i t h e r  t h e  c o n d i t i o n  o f  r i g i d  c o u p -  
l i n g  ( 4 )  

t @ '~1,1 G1%11 G2 '1:22 ( 1 3  ) ( V~~ - -  Ga'~a 4- Ga 1 -t- "~a + "~t "~  "~  ~2 ~:2s -= 1 4- t -4- + - -  V2o + \ t + ~ 
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if the solution will satisfy inequality (5) 

T 2 

or if this is not the case, the Coulomb dry-friction law (6) 

- -  ~2~23 + 72 (~13 + ~4) x23 = / sign V$ 3) [ - -  (~2 + 2 ~ )  (v~3 + ~14) + ~2 (~3 + ~4) 2 + ~2~]~]. ( 1 4 )  

The d e r i v e d  s y s t e m  o f  t e n  n o n l i n e a r  a l g e b r a i c  e q u a t i o n s  ( 1 1 ) ,  ( 1 2 ) ,  a nd  ( 1 3 )  o r  ( 1 4 )  
was s t u d i e d  n u m e r i c a l l y  by t h e  Newton i t e r a t i o n  m e t h o d .  W i t h  s m a l l  v a l u e s  o f  Vz0,  V20 f o r  
t h e  z e r o t h  a p p r o x i m a t i o n  we t o o k  t h e  s o l u t i o n  o f  t h e  p r o b l e m  f r o m  l i n e a r  e l a s t i c i t y  t h e o r y ,  
w h i c h  i s  e a s i l y  f o u n d  by a n a l y t i c a l  m e t h o d s .  F o r  c o n v e r g e n c e  o f  t h e  i t e r a t i o n s  a t  l a r g e  
c o l l i s i o n  v e l o c i t i e s  i t  i s  n e c e s s a r y  g r a d u a l l y  t o  i n c r e a s e  Vz0,  V20, t a k i n g  a s  t h e  z e r o t h  
a p p r o x i m a t i o n  t h e  s o l u t i o n  f o u n d  i n  t h e  p r e v i o u s  s t e p .  

Some o f  t h e  n u m e r i c a l  r e s u l t s  a r e  p r e s e n t e d  i n  F i g s .  2 - 4  f o r  t h e  c a s e  o f  an  a l u m i n u m  
body  i m p a c t i n g  on a body  o f  s t e e l .  I n  t h i s  c a s e  t h e  v e l o c i t i e s  w e r e  r e f e r r e d  t o  cz2 and  
t h e  s t r e s s e s  t o  ( t  2 + 2D2) .  The e l a s t i c i t y  m o d u l i  h a v e  t h e  f o l l o w i n g  v a l u e s :  t 1 = 1 . 1 5 5 -  
10 ~ MPa, D1 = 7 . 7 " 1 0 4  MPa, 12 = 4 . 0 5 " 1 0 4  MPa, ~2 = 2 - 7 " 1 0 4  MPa, i n  F i g s .  2 a nd  4 s = ml = 
n 1 = - 1 0 5  MPa, s = m2 = n2 = - 4 " 1 0 4  MPa, i n  F i g .  3 ~1 = ml = n l  = - 1 0 6  MPa, ~ = ma = n~ = 
-4"10 ~ MPa. 

Figure 2 shows the velocity components V= (=) and V2 (~) of the points in the medium 
(lines i and 2) in zones 2 and 3 as functions of the coefficient of friction at the boundary 
between the bodies, for one and the same velocity of motion V10 = 3, V~0 = 1 for the impac- 
ting body. The connecting point for the graphs of f = f, corresponds to the onset of coupling 
for the colliding bodies. The parameters of the stress-strain state, calculated for the 
case in which f > f,, will be the same as when f = f,. 

Figure 3 shows the relationship between the velocities of SW propagation G~, G2, G~, 
G~ (lines 1-4) and V~0 for f = 0.3, V20 = i. Unlike the linear case in which the SW veloci- 
ties are constant, these relationships are significantly nonlinear. A reduction in G~ and 
G~ for large V~0 is explained by the fact that the transfer velocity of the impacting body 
is directed downward, while the velocities G~ and G~ are assumed to be directed vertically 
upward. 

The curves shown in Fig. 4 give the values for the velocities V~0, V=0, at which plastic 
deformations set in: i) f = 0.i; 2) f = 0.3. These initially arise in aluminum in the 
region adjacent to the boundary of contact between the colliding bodies. The horizontal 
segments of the curves correspond to penetration. We made use of the Mises plasticity con- 
dition. The results obtained from the application of the Trask plasticity condition differ 
insignificantly. Plastic strains are developed at collision velocities that are small for 
problems of the class under consideration (V~0 = 60-110 m/sec). The calculations were car- 
ried out with yield points that have been doubled in comparison to the static values (for 
steel Oy = 1500 MPa, and for aluminum Oy = 600 MPa). Let us note that in our case the pro- 
cess of loading is active, and the appearance of plastic strains cannot therefore be the 
cause for curtailing the calculations. In this case relationships (i) and (2) may be regar- 
ded as a variant of the deformation theory of the plasticity. 
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The question of determining the values of the collision velocities is of interest to 
the extent that they permit utilization of linear simulation. Numerical experiments 
have demonstrated that when Vz0 < 100-120 m/sec the relative error between the solutions 
obtained for the linear-elastic medium and the solution found by means of the nonlinear 
model does not exceed 5%. Thus, if no plastic strains arise in the collision of elastic 
bodies, the calculation of the stress-strain state can be accomplished by resorting to the 
procedures of linear elasticity theory. 

The nonlinear effects in the given problem also make themselves evident by virtue of 
the fact that at the SW in the linear case of purely transverse E 2 and Zs, the normal com- 
ponents of velocity and stress also undergo discontinuity. In addition, these SW are expan- 
sion waves, i.e., we observe the Weissenberg effect (pure shear leads to expansion of the 
medium). The magnitude of all nonlinear effects increases as Vz0 increases. 

Everywhere above, in the description of the results, we make references to intervals 
in the values of Vz0. This is explained by the fact that the relationship between the 
parameters of the strain process and V20 is weak and undergoes strengthening only insigni- 
ficantly as f increases. 

It is recommended in [3] for the use of that class of solutions with a quasilateral 
SW in these problems to verify the satisfaction of the so-called thermodynamic condition 
of consistency 

- -  p+ (V~ - -  G) [Vi i  [Vi] + 2c~ [Vj] - -  2 (V~ - -  G) [W] ~> 0. (15)  

Calculations with various values of the parameters of the problem have shown that the left- 
hand side of expression (15) is always positive and increases as the velocity of the colli- 
sion between the bodies increases. 
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